Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2015): 20232121, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38228175

RESUMO

Swarming locusts present a quintessential example of animal collective motion. Juvenile locusts march and hop across the ground in coordinated groups called hopper bands. Composed of up to millions of insects, hopper bands exhibit aligned motion and various collective structures. These groups are well-documented in the field, but the individual insects themselves are typically studied in much smaller groups in laboratory experiments. We present, to our knowledge, the first trajectory data that detail the movement of individual locusts within a hopper band in a natural setting. Using automated video tracking, we derive our data from footage of four distinct hopper bands of the Australian plague locust, Chortoicetes terminifera. We reconstruct nearly 200 000 individual trajectories composed of over 3.3 million locust positions. We classify these data into three motion states: stationary, walking and hopping. Distributions of relative neighbour positions reveal anisotropies that depend on motion state. Stationary locusts have high-density areas distributed around them apparently at random. Walking locusts have a low-density area in front of them. Hopping locusts have low-density areas in front and behind them. Our results suggest novel insect interactions, namely that locusts change their motion to avoid colliding with neighbours in front of them.


Assuntos
Gafanhotos , Animais , Anisotropia , Austrália , Movimento , Movimento (Física)
2.
Pest Manag Sci ; 80(3): 1566-1576, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37966378

RESUMO

BACKGROUND: Nonpathogenic fungi associated with plants can enhance plant defenses against stress factors, including herbivory. This study assessed whether cotton plants grown from seeds treated with different fungi affected boll weevil, Anthonomus grandis grandis Boheman, development and reproduction along with plant tolerance. We used whole plants grown from seeds treated with different fungi (Chaetomium globosum TAMU520 and TAMU559, Phialemonium inflatum TAMU490, and Beauveria bassiana) versus non-treated controls to test insect growth, reproduction, and plant tolerance assays in a greenhouse. RESULTS: Regarding boll weevil reproduction, fewer larvae hatched and fewer adults emerged from fungal-treated plants. In addition, the developmental time from oviposition to adult emergence was delayed in the plants treated with all fungi. For plant tolerance, B. bassiana-treated plants attacked by boll weevils shed fewer squares than nonfungal-treated plants. CONCLUSION: Fungal treatments can affect boll weevil performance and reproduction on cotton plants, with potentially negative effects on population growth. Collectively, these results support the potential for cottonseed treatments with fungi as a novel tool for boll weevil management in the field. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Gorgulhos , Animais , Feminino , Gossypium , Sementes , Controle de Insetos/métodos , Larva
3.
Insects ; 14(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37999044

RESUMO

Rapid and accurate identification of Anthonomus grandis subspecies is crucial for effective management and eradication. Current diagnostic methods have limitations in terms of time to diagnosis (up to seven days) and can yield ambiguous results. Here, we present the validation of a custom TaqMan SNP Genotyping Assay for the rapid and accurate identification of A. grandis grandis (boll weevil) and A. g. thurberiae (thurberia weevil) subspecies. To validate the assay, we conducted three main experiments: (1) a sensitivity test to determine the DNA concentration range at which the assay performs, (2) a non-target specificity test to ensure no amplification in non-target weevils (false positives), and (3) an accuracy test comparing the results of the new assay to previously established methods. These experiments were carried out in parallel at three independent facilities to confirm the robustness of the assay to variations in equipment and personnel. We used DNA samples from various sources, including field-collected specimens, museum specimens, and previously isolated DNA. The assay demonstrated high sensitivity (PCR success with ≥0.05 ng/µL DNA template), specificity (0.02 false positive rate), and accuracy (97.7%) in diagnosing boll weevil and thurberia weevil subspecies. The entire workflow, including DNA extraction, assay preparation, PCR run time, and data analysis, can be completed within a single workday (7-9 h) by a single technician. The deployment of this assay as a diagnostic tool could benefit boll weevil management and eradication programs by enabling same-day diagnosis of trap-captured or intercepted weevil specimens. Furthermore, it offers a more reliable method for identifying unknown specimens, contributing to the overall effectiveness of boll weevil research and control efforts.

4.
PLoS One ; 18(11): e0289060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38011106

RESUMO

Fall armyworm (FAW) is a global agricultural pest, causing substantial economic losses in corn and many other crops. Complicating efforts to control this pest is its capacity for long distance flights, which has been described in greatest detail for the central and eastern sections of the United States. FAW infestations are also routinely found in agricultural areas in southern Arizona, which lie beyond the western limits of the mapped migratory pathways. Climate suitability analysis found that the affected Arizona locations cannot support permanent FAW populations, indicating that these FAW most likely arise from annual migrations. A better understanding of this migration would provide insights into how large moth populations can move across desert habitats as well as the degree of gene flow occurring between FAW populations across the North American continent. In this study the Arizona populations were genetically characterized and compared to a selection of permanent and migratory FAW from multiple sites in the United States and Mexico. The results are consistent with migratory contributions from permanent populations in the states of Texas (United States) and Sinaloa (Mexico), while also providing evidence of significant barriers to gene flow between populations within Mexico. An unexpected finding was that two genetically distinct FAW subpopulations known as "host strains" have a differential distribution in the southwest that may indicate significant differences in their migration behavior in this region. These findings indicate that the combination of mitochondrial and Z-linked markers have advantages in comparing FAW populations that can complement and extend the findings from other methods.


Assuntos
Migração Animal , Zea mays , Animais , Texas , México , Spodoptera/genética , Arizona
5.
Int J Mol Sci ; 24(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446278

RESUMO

Many organisms can sense and respond to magnetic fields (MFs), with migratory species in particular utilizing geomagnetic field information for long-distance migration. Cryptochrome proteins (Crys) along with a highly conserved Iron-sulfur cluster assembly protein (i.e., MagR) have garnered significant attention for their involvement in magnetoresponse (including magnetoreception). However, in vivo investigations of potential transcriptional crosstalk between Crys and MagR genes have been limited. The brown planthopper, Nilaparvata lugens, is a major migratory pest insect and an emerging model for studying MF intensity-related magnetoresponse. Here, we explored in vivo transcriptional crosstalk between Crys (Cry1 and Cry2) and MagR in N. lugens. The expression of Crys and MagR were found to be sensitive to MF intensity changes as small as several micro-teslas. Knocking down MagR expression led to a significant downregulation of Cry1, but not Cry2. The knockdown of either Cry1 or Cry2 individually did not significantly affect MagR expression. However, their double knockdown resulted in significant upregulation of MagR. Our findings clearly indicate transcriptional crosstalk between MagR and Crys known to be involved in magnetoresponse. This work advances the understanding of magnetoresponse signaling and represents a key initial step towards elucidating the functional consequences of these novel in vivo interactions.


Assuntos
Criptocromos , Hemípteros , Animais , Criptocromos/genética , Criptocromos/metabolismo , Hemípteros/metabolismo , Transdução de Sinais , Enxofre/metabolismo , Ferro/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(34): e2200759119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969777

RESUMO

Adaptive plasticity requires an integrated suite of functional responses to environmental variation, which can include social communication across life stages. Desert locusts (Schistocerca gregaria) exhibit an extreme example of phenotypic plasticity called phase polyphenism, in which a suite of behavioral and morphological traits differ according to local population density. Male and female juveniles developing at low population densities exhibit green- or sand-colored background-matching camouflage, while at high densities they show contrasting yellow and black aposematic patterning that deters predators. The predominant background colors of these phenotypes (green/sand/yellow) all depend on expression of the carotenoid-binding "Yellow Protein" (YP). Gregarious (high-density) adults of both sexes are initially pinkish, before a YP-mediated yellowing reoccurs upon sexual maturation. Yellow color is especially prominent in gregarious males, but the reason for this difference has been unknown since phase polyphenism was first described in 1921. Here, we use RNA interference to show that gregarious male yellowing acts as an intrasexual warning signal, which forms a multimodal signal with the antiaphrodisiac pheromone phenylacetonitrile (PAN) to prevent mistaken sexual harassment from other males during scramble mating in a swarm. Socially mediated reexpression of YP thus adaptively repurposes a juvenile signal that deters predators into an adult signal that deters undesirable mates. These findings reveal a previously underappreciated sexual dimension to locust phase polyphenism, and promote locusts as a model for investigating the relative contributions of natural versus sexual selection in the evolution of phenotypic plasticity.


Assuntos
Mimetismo Biológico , Gafanhotos , Animais , Feminino , Gafanhotos/genética , Masculino , Feromônios/metabolismo , Pigmentação , Densidade Demográfica , Caracteres Sexuais
7.
Front Physiol ; 13: 954228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003646

RESUMO

Manipulating the hypomagnetic field (HMF), which is the absence or significant weakening (<5 µT) of the geomagnetic field (GMF), offers a unique tool to investigate magnetic field effects on organismal physiology, development, behavior and life history. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) has been utilized to study changes in gene expression associated with exposure to the HMF. However, selecting appropriate reference genes (RGs) with confirmed stable expression across environments for RT-qPCR is often underappreciated. Using three algorithms (BestKeeper, NormFinder, and GeNorm), we investigated the expression stability of eight candidate RGs when exposed to the HMF condition versus local GMF during developmental from juveniles to adults in the migratory insect pest, the brown planthopper Nilaparvata lugens. During the nymphal stage, RPL5 & α-TUB1, EF1-α & ARF1, RPL5 & AK, EF1-α & RPL5, and ARF1 & AK were suggested as the most stable RG sets in the 1st to 5th instars, respectively. For 1- to 3-day-old adults, AK & ARF1, AK & α-TUB1, AK & ARF1 and EF1-α & RPL5, AK & α-TUB1, AK & EF1-α were the optimal RG sets for macropterous and brachypterous females, respectively. ACT1 & RPL5, RPL5 & EF1-α, α-TUB1 & ACT1 and EF1-α & RPL5, ARF1 & ACT1, ACT1 & ARF1 were the optimal RG sets for macropterous and brachypterous males, respectively. These results will facilitate accurate gene expression analyses under the HMF in N. lugens. The verification approach illustrated in this study highlights the importance of identifying reliable RGs for future empirical studies of magnetobiology (including magnetoreception) that involve magnetic field intensity as a factor.

8.
Insects ; 13(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36005364

RESUMO

Mormon crickets are a major rangeland pest in the western United States and are currently managed by targeted applications of non-specific chemical insecticides, which can potentially have negative effects on the environment. In this study, we took the first steps toward developing RNAi methods for Mormon crickets as a potential alternative to traditional broad-spectrum insecticides. To design an effective RNAi-based insecticide, we first generated a de novo transcriptome for the Mormon cricket and developed dsRNAs that could silence the expression of seven housekeeping genes. We then characterized the RNAi efficiencies and time-course of knockdown using these dsRNAs, and assessed their ability to induce mortality. We have demonstrated that it is possible to elicit RNAi responses in the Mormon cricket by injection, but knockdown efficiencies and the time course of RNAi response varied according to target genes and tissue types. We also show that one of the reasons for the poor knockdown efficiencies could be the presence of dsRNA-degrading enzymes in the hemolymph. RNAi silencing is possible in Mormon cricket, but more work needs to be done before it can be effectively used as a population management method.

9.
Insects ; 13(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35447778

RESUMO

The boll weevil (Anthonomus grandis Boheman) reproduces on a reported 13 species of wild host plants in North America, two in the United States and 12 in Mexico. The distributions of these plants are of economic importance to pest management and provide insight into the evolutionary history and origin of the BW. However, detailed information regarding the distributions of many of these species is lacking. In this article, we present distribution models for all of the reported significant BW host plants from Mexico and the United States using spatial distribution modelling software. Host plant distributions were divided into two groups: "eastern" and "western." In Mexico, Hampea nutricia along the Gulf Coast was the most important of the eastern group, and the wild cottons, Gossypium aridum and Gossypium thurberi were most important in the western group. Other species of Hampea, Gossypium, and Cienfuegosia rosei have relatively restricted distributions and are of apparent minimal economic importance. Cienfuegosia drummondii is the only truly wild host in the southern United States, east of New Mexico. Factors determining potential distributions were variable and indicated that species were present in five vegetation types. Ecological and economic considerations of host plant distributions are discussed, as well as threats to host plant conservation.

10.
Insect Biochem Mol Biol ; 145: 103773, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35405259

RESUMO

Dietary protein and digestible carbohydrates are two key macronutrients for insect herbivores, but the amounts and ratios of these two macronutrients in plant vegetative tissues can be highly variable. Typically, insect herbivores regulate their protein-carbohydrate intake by feeding selectively on nutritionally complementary plant tissues, but this may not always be possible. Interestingly, lab experiments consistently demonstrate that performance - especially growth and survival - does not vary greatly when caterpillars and nymphal grasshoppers are reared on diets that differ in their protein-carbohydrate content. This suggests insect herbivores employ post-ingestive physiological mechanisms to compensate for variation in diet protein-carbohydrate profile. However, the molecular mechanisms that underlie this compensation are not well understood. Here we explore, for the first time in an insect herbivore, the transcriptional effects of two dietary factors: protein-to-carbohydrate ratio (p:c) and total macronutrient (p + c) content. Specifically, we reared Helicoverpa zea caterpillars on three diets that varied in diet p:c ratio and one diet that varied in total p + c concentration, all within an ecologically-relevant range. We observed two key findings. Caterpillars reared on diets with elevated total p + c content showed large differences in gene expression. In contrast, only small differences in gene expression were observed when caterpillars were reared on diets with different p:c ratios (spanning from protein-biased to carbohydrate-biased). The invariable expression of many metabolic genes across these variable diets suggests that H. zea caterpillars employ a strategy of constitutive expression to deal with protein-carbohydrate imbalances rather than diet-specific changes. This is further supported by two findings. First, few genes were uniquely associated with feeding on a protein- and carbohydrate-biased diet. Second, many differentially-expressed genes were shared across protein-biased, carbohydrate-biased, and concentrated diet treatments. Our study provides insights into the post-ingestive physiological mechanisms insect herbivores employ to regulate protein-carbohydrate intake. Most notably, it suggests that H. zea, and perhaps other generalist species, use similar post-ingestive mechanisms to deal with protein-carbohydrate imbalances - regardless of the direction of the imbalance.


Assuntos
Herbivoria , Mariposas , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta , Carboidratos da Dieta/metabolismo , Expressão Gênica , Insetos/metabolismo , Larva/metabolismo , Mariposas/metabolismo
11.
Ecol Evol ; 12(3): e8706, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35356552

RESUMO

Speciation is the process through which reproductive isolation develops between distinct populations. Because this process takes time, speciation studies often necessarily examine populations within a species that are at various stages of divergence. The fall armyworm, Spodoptera frugiperda (J.E. Smith), is comprised of two strains (R = Rice & C = Corn) that serve as a novel system to explore population divergence in sympatry. Here, we use ddRADSeq data to show that fall armyworm strains in the field are largely genetically distinct, but some interstrain hybridization occurs. Although we detected F1 hybrids of both R- and C-strain maternal origin, only hybrids with R-strain mtDNA were found to contribute to subsequent generations, possibly indicating a unidirectional barrier to gene flow. Although these strains have been previously defined as "host plant-associated," we recovered an equal proportion of R- and C-strain moths in fields dominated by C-strain host plants. As an alternative to host-associated divergence, we tested the hypothesis that differences in nightly activity patterns could account for reproductive isolation by genotyping temporally collected moths. Our data indicates that strains exhibit a significant shift in the timing of their nightly activities in the field. This divergence in phenology creates a prezygotic reproductive barrier that likely maintains the genetic isolation between strains. Thus, we conclude that it may be ecologically inaccurate to refer to the C- and R- strain as "host-associated" and they should more appropriately be considered "allochronic strains."

12.
J Appl Microbiol ; 133(2): 422-435, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35352442

RESUMO

AIM: The objective of this research was to screen fungal isolates originally isolated from cotton plants and measure their effects on the interactions between soybean and two aboveground pests (cabbage looper; Trichoplusia ni and soybean looper; Chrysodeixis includens) as well as a belowground pest (soybean cyst nematode; Heterodera glycines). METHODS AND RESULTS: For aboveground pests, we measured the leaf area consumed and larval weight. For our belowground pest tests, we measured shoot height, shoot fresh weight, root fresh weight and number of cysts. Out of the 50 fungal isolates tested, we tested 30 fungi in the interaction with cabbage looper, 36 for soybean looper, 41 for soybean cyst nematode. We tested 23 isolates against all pests and identified multiple isolates that significantly changed the response of pests on inoculated soybean plants versus controls. CONCLUSIONS: We identified three fungal isolates that significantly reduced both leaf area consumed aboveground by caterpillars and number of cysts produced belowground by nematodes. These isolates were an Epicoccum italicum, a Chaetomium undulatum and a Stemphylium majusculum. SIGNIFICANCE AND IMPACT OF STUDY: Overall, this study provides important insights into plant-fungal interactions and their effect on both above- and belowground pests. This study also highlights an important first step towards harnessing the potential of microbial inoculates as a tool for integrated pest management in soybeans.


Assuntos
Cistos , Fabaceae , Mariposas , Tylenchoidea , Animais , Fungos
13.
PLoS One ; 17(2): e0263620, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35134064

RESUMO

Insect immune responses to multiple pathogen groups including viruses, bacteria, fungi, and entomopathogenic nematodes have traditionally been documented in model insects such as Drosophila melanogaster, or medically important insects such as Aedes aegypti. Despite their potential importance in understanding the efficacy of pathogens as biological control agents, these responses are infrequently studied in agriculturally important pests. Additionally, studies that investigate responses of a host species to different pathogen groups are uncommon, and typically focus on only a single time point during infection. As such, a robust understanding of immune system responses over the time of infection is often lacking in many pest species. This study was conducted to understand how 3rd instar larvae of the major insect pest Helicoverpa zea responded through the course of an infection by four different pathogenic groups: viruses, bacteria, fungi, and entomopathogenic nematodes; by sampling at three different times post-inoculation. Physiological immune responses were assessed at 4-, 24-, and 48-hours post-infection by measuring hemolymph phenoloxidase concentrations, hemolymph prophenoloxidase concentrations, hemocyte counts, and encapsulation ability. Transcriptional immune responses were measured at 24-, 48-, and 72-hours post-infection by quantifying the expression of PPO2, Argonaute-2, JNK, Dorsal, and Relish. This gene set covers the major known immune pathways: phenoloxidase cascade, siRNA, JNK pathway, Toll pathway, and IMD pathway. Our results indicate H. zea has an extreme immune response to Bacillus thuringiensis bacteria, a mild response to Helicoverpa armigera nucleopolyhedrovirus, and little-to-no detectable response to either the fungus Beauveria bassiana or Steinernema carpocapsae nematodes.


Assuntos
Mariposas/genética , Mariposas/microbiologia , Controle Biológico de Vetores/métodos , Animais , Bacillus thuringiensis/patogenicidade , Agentes de Controle Biológico , Hemócitos/metabolismo , Hemolinfa/metabolismo , Imunidade , Proteínas de Insetos/genética , Larva/imunologia , Larva/metabolismo , Lepidópteros/genética , Lepidópteros/imunologia , Mariposas/imunologia , Nucleopoliedrovírus/patogenicidade , Controle de Pragas/métodos
14.
Plants (Basel) ; 11(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35161264

RESUMO

Plants allocate their limited resources toward different physiological processes, dynamically adjusting their resource allocation in response to environmental changes. How beneficial plant-associated microbes influence this allocation is a topic that continues to interest plant biologists. In this study, we examined the effect of a beneficial fungus, Phialemonium inflatum, on investment in growth and anti-herbivore resistance traits in cucumber plants (Cucumis sativus). We inoculated cucumber seeds with P. inflatum spores and measured several growth parameters, including germination rate, above and belowground biomass, and number of flowers. We also examined plant resistance to adult and larval striped cucumber beetles (Acalymma vitattum), and quantified levels of defense hormones in leaves and roots. Our results indicate that P. inflatum strongly enhances cucumber plant growth and reproductive potential. Although fungus treatment did not improve plant resistance to cucumber beetles, inoculated plants were more tolerant to root herbivory, experiencing less biomass reduction. Together, these findings document how a beneficial plant-associated fungus shifts plant investment in growth over herbivore resistance, highlighting the importance of microbes in mediating plant-herbivore interactions. These findings also have important implications for agricultural systems, where beneficial microbes are often introduced or managed to promote plant growth or enhance resistance.

15.
Insects ; 13(2)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35206730

RESUMO

Microbes have the potential to affect multitrophic plant-insect-predator interactions. We examined whether cotton plants treated with potentially beneficial fungi affect interactions between cotton aphids Aphis gossypii and predatory lady beetles Hippodamia convergens. We used Y-tube olfactometer assays to test lady beetle behavioral responses to stimuli emitted by aphid-infested and non-infested cotton plants grown from seeds treated with either Phialemonium inflatum (TAMU490) or Chaetomium globosum (TAMU520) versus untreated control plants. We tested a total of 960 lady beetles (480 males and 480 females) that had been deprived of food for approximately 24 h. In the absence of any fungal treatments, males preferred stimuli from aphid-infested plants, and females spent more time associated with stimuli from aphid-infested versus non-infested plants. When fungal treatments were added, we observed that lady beetles preferred non-aphid-infested P. inflatum plants, and males responded slower to plants treated with P. inflatum in the absence of aphids. We found some evidence to suggest that lady beetle behavioral responses to plants might vary according to the fungal treatment but not strongly impact their use as part of an insect pest management strategy.

16.
PeerJ ; 9: e12195, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631319

RESUMO

The fall armyworm, Spodoptera frugiperda, is a polyphagous global pest with a preference for gramineous crops such as corn, sorghum and pasture grasses. This species is comprised of two morphologically identical but genetically distinct host strains known as the corn and rice strains, which can complicate pest management approaches. Two molecular markers are commonly used to differentiate between strains, however, discordance between these markers can lead to inconclusive strain identification. Here, we used double digest restriction site associated DNA sequencing to identify diagnostic single nucleotide polymorphisms (SNPs) with alleles unique to each strain. We then used these strain-specific SNPs to develop four real-time PCR based TaqMan assays to rapidly and reliably differentiate between strains and interstrain hybrids. These assays provide a new tool for differentiating between strains in field-collected samples, facilitating future studies on strain population dynamics and interstrain hybridization rates. Understanding the basic ecology of S. frugiperda strains is necessary to inform future management strategies.

17.
PLoS One ; 16(10): e0258836, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34714845

RESUMO

Cultivated cotton, such as Gossypium hirsutum L., produces extrafloral (EF) nectar on leaves (foliar) and reproductive structures (bracteal) as an indirect anti-herbivore defense. In exchange for this carbohydrate-rich substance, predatory insects such as ants protect the plant against herbivorous insects. Some EF nectar-bearing plants respond to herbivory by increasing EF nectar production. For instance, herbivore-free G. hirsutum produces more bracteal than foliar EF nectar, but increases its foliar EF nectar production in response to herbivory. This study is the first to test for systemically induced changes to the carbohydrate composition of bracteal EF nectar in response to foliar herbivory on G. hirsutum. We found that foliar herbivory significantly increased the sucrose content of bracteal EF nectar while glucose and fructose remained unchanged. Sucrose content is known to influence ant foraging behavior and previous studies of an herbivore-induced increase to EF nectar caloric content found that it led to increased ant activity on the plant. As a follow-up to our finding, ant recruitment to mock EF nectar solutions that varied in sucrose content was tested in the field. The ants did not exhibit any preference for either solution, potentially because sucrose is a minor carbohydrate component in G. hirsutum EF nectar: total sugar content was not significantly affected by the increase in sucrose. Nonetheless, our findings raise new questions about cotton's inducible EF nectar responses to herbivory. Further research is needed to determine whether an herbivore-induced increase in sucrose content is typical of Gossypium spp., and whether it constitutes a corollary of systemic sucrose induction, or a potentially adaptive mechanism which enhances ant attraction to the plant.


Assuntos
Formigas/fisiologia , Gossypium/química , Sacarose/química , Animais , Gossypium/parasitologia , Herbivoria , Folhas de Planta/química , Folhas de Planta/parasitologia , Néctar de Plantas/química
18.
Evol Appl ; 14(7): 1778-1793, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34295363

RESUMO

The boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae), is an important pest of commercial cotton across the Americas. In the United States, eradication of this species is complicated by re-infestations of areas where eradication has been previously successful and by the existence of morphologically similar variants that can confound identification efforts. To date, no study has applied a high-throughput sequencing approach to better understand the population genetic structure of the boll weevil. Furthermore, only a single study has investigated genetic relationships between populations in North and South America. We used double digest restriction site-associated DNA sequencing (ddRADseq) to resolve the population genomic structure of the boll weevil in the southern United States, northern Mexico, and Argentina. Additionally, we assembled the first complete mitochondrial genome for this species and generated a preliminary whole genome assembly, both of which were used to improve the identification of informative loci. Downstream analyses revealed two main lineages-one consisting of populations found geographically west of the Sierra Madre Occidental mountain range and the second consisting of populations found to the east-were revealed, and both were sub-structured. Population geographic structure was consistent with the isolation by distance model, indicating that geogrpahic distance is likely a primary mechanism driving divergence in this species. Boll weevil populations from Argentina were found to be more closely related to the eastern lineage, suggesting a recent colonization of South America by the eastern lineage, but additional sampling across Mexico, Central America and South America is needed to further clarify their origin. Finally, we uncovered an instance of population turnover or replacement, highlighting the temporal instability of population structure.

19.
J Microbiol Methods ; 186: 106237, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33984390

RESUMO

A simple method for fungal epiphyte microscopic observations and preservation is described. A two-part clear casting resin, cotton leaves and two species of fungi were used to validate this protocol. We obtained very detailed images of fungal structures using this approach in addition to retaining the impressions for future reference.


Assuntos
Beauveria/isolamento & purificação , Endófitos/isolamento & purificação , Microscopia/métodos , Folhas de Planta/microbiologia , Sordariales/isolamento & purificação , Beauveria/citologia , Endófitos/classificação , Endófitos/genética , Gossypium/microbiologia , Microscopia/instrumentação , Folhas de Planta/química , Resinas Sintéticas/química , Sordariales/citologia
20.
BMC Genomics ; 22(1): 179, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33711916

RESUMO

BACKGROUND: The fall armyworm (Spodoptera frugiperda (J.E. Smith)) is a highly polyphagous agricultural pest with long-distance migratory behavior threatening food security worldwide. This pest has a host range of > 80 plant species, but two host strains are recognized based on their association with corn (C-strain) or rice and smaller grasses (R-strain). The population genomics of the United States (USA) fall armyworm remains poorly characterized to date despite its agricultural threat. RESULTS: In this study, the population structure and genetic diversity in 55 S. frugiperda samples from Argentina, Brazil, Kenya, Puerto Rico and USA were surveyed to further our understanding of whole genome nuclear diversity. Comparisons at the genomic level suggest a panmictic S. frugiperda population, with only a minor reduction in gene flow between the two overwintering populations in the continental USA, also corresponding to distinct host strains at the mitochondrial level. Two maternal lines were detected from analysis of mitochondrial genomes. We found members from the Eastern Hemisphere interspersed within both continental USA overwintering subpopulations, suggesting multiple individuals were likely introduced to Africa. CONCLUSIONS: Our research is the largest diverse collection of United States S. frugiperda whole genome sequences characterized to date, covering eight continental states and a USA territory (Puerto Rico). The genomic resources presented provide foundational information to understand gene flow at the whole genome level among S. frugiperda populations. Based on the genomic similarities found between host strains and laboratory vs. field samples, our findings validate the experimental use of laboratory strains and the host strain differentiation based on mitochondria and sex-linked genetic markers extends to minor genome wide differences with some exceptions showing mixture between host strains is likely occurring in field populations.


Assuntos
Fluxo Gênico , Zea mays , Animais , Brasil , Humanos , Quênia , Spodoptera , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...